Stability analysis of floating wind turbine structure with turned mass damper-nonlinear energy sink

Author:

Mu Anle1,Huang Zebo1ORCID,Hu Juncan1,Yang Bin1,Wang Jiahui1,Qian Ye1

Affiliation:

1. School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an710048, People's Republic of China

Abstract

The conventional tuned mass damper (TMD) has the defect of a narrow tuning band in the stability control of a floating wind turbine (FWT). In this paper, a hybrid vibration reduction method of tuned mass damper-nonlinear energy sink (TMD-NES) is proposed, which makes full use of the broadband advantage of NES and can effectively avoid its initial energy sensitivity disadvantage. A FWT dynamics model with TMD-NES was established, the complex variable average method was used to solve the dynamic response of the system, and the Runge–Kutta method is used to prove the reliability of the analytical method. The bifurcation characteristics of NES and the vibration suppression effect of TMD-NES are analyzed and discussed. The results show that the proposed method reduces the peak energy of the tower surge response by 95.3%, broadens the frequency band of vibration reduction, reduces the sensitivity to the initial energy, and improves the robustness of the system.

Funder

National Natural Science Foundation of China

Ph.D Innovation fund projects of University of Technology

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3