2-Propanol interacting with Co3O4(001): A combined vSFS and AIMD study

Author:

Omranpoor Amir H.1ORCID,Bera Anupam1ORCID,Bullert Denise1,Linke Matthias1ORCID,Salamon Soma23ORCID,Webers Samira23,Wende Heiko23ORCID,Hasselbrink Eckart13ORCID,Spohr Eckhard1ORCID,Kenmoe Stéphane1ORCID

Affiliation:

1. Fakultät für Chemie, Universität Duisburg-Essen 1 , D-45117 Essen, Germany

2. Fakultät für Physik, Universität Duisburg-Essen 2 , D-47057 Duisburg, Germany

3. Center for Nanointegration (CENIDE), Universität Duisburg-Essen 3 , D-47057 Duisburg, Germany

Abstract

The interaction of 2-propanol with Co3O4(001) was studied by vibrational sum frequency spectroscopy and ab initio molecular dynamics simulations of 2-propanol dissolved in a water film to gain an insight, at the molecular level, into the pathways of catalytic oxidation. The experimental study has been performed under near ambient conditions, where the presence of water vapor is unavoidable, resulting in a water film on the sample and, thereby, allowing us to mimic the solution–water interface. Both experiment and theory conclude that 2-propanol adsorbs molecularly. The lack of dissociation is attributed to the adsorption geometry of 2-propanol in which the O–H bond does not point toward the surface. Furthermore, the copresent water not only competitively adsorbs on the surface but also inhibits 2-propanol deprotonation. The calculations reveal that the presence of water deactivates the lattice oxygen, thereby reducing the surface activity. This finding sheds light on the multifaceted role of water at the interface for the electrochemical oxidation of 2-propanol in aqueous solution as recently reported [Falk et al., ChemCatChem 13, 2942–2951 (2021)]. At higher temperatures, 2-propanol remains molecularly adsorbed on Co3O4(001) until it desorbs with increasing surface temperature.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3