Affiliation:
1. Management Science and Engineering, College of Economics and Management, Shandong University of Science and Technology, Qingdao 266590, China
2. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Abstract
In this paper, a recompiled multiphase flow solver, which introduced the lateral flow source into the code, is developed to investigate the effect of the lateral flow on the supercavitation phenomenon. The evolution of the supercavity profile and the resistance of the vehicle under different lateral flow speeds are studied. The results show that the recompiled solver can calculate the effect of the lateral flow on the supercavitation, and the influence of lateral flow on the supercavity is related to the speed of the counter flow. Under the same lateral flow velocity, the higher the convection velocity, the weaker the influence of lateral flow on the cavity profile and resistance. When the lateral flow velocity is less than 8% of the convection velocity, the effect of the lateral flow on the supercavity size and the resistance of the vehicle can be ignored. As the lateral flow strengthens, the supercavity will deform and even break and the resistance of the vehicle increases significantly. After removing the source of the lateral flow, the cavity re-grows again and forms a huge supercavity, which is much larger than the original one before introducing the velocity source. Then, the cavity gradually shrinks and reaches a new steady state.
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献