A modified dynamic contact angle model applied to double droplet impact curved surface

Author:

Wang Zhongyi1ORCID,Zhu Junhao1ORCID,Wang Meng1ORCID,Liu Xiaogang1ORCID,Wang Yanhua1ORCID,Li Yulai12ORCID

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University 1 , Nantong ST 145, Harbin 150001, China

2. No. 703 Research Institute of CSSC 2 , Harbin 150078, China

Abstract

The microscopic processes involving droplet impact and interaction on spatially curved surfaces remain unclear. In this study, we implement a dynamic contact angle model with adjusted upper and lower limits into a simulation of droplet motion, constructing a three-dimensional numerical model to depict the dynamics and heat transfer characteristics of symmetric double droplets impacting plane, concave, and convex cylindrical, and concave and convex spherical surfaces. The processes of droplet spreading, retraction, rebound, splitting, and heat transfer are elaborated, revealing the role of surface curvature during impact. Our results show that different curvatures significantly affect the flow morphology of the flow dividing line. For the two main curvatures of the surface, the curvature in the direction of droplet arrangement predominates. Positive curvature promotes spreading and repels the liquid phase, while negative curvature promotes agglomeration and attracts the liquid phase. Extreme situations arise when both positive and negative curvatures occur simultaneously. Regarding heat transfer, the overall heat transfer rate is mainly determined by the spread area, and the heat transfer performance of convex surfaces is better than that of plane or concave surfaces. Residual bubbles increase heat transfer inhomogeneity, but different surfaces do not show significant variability. Additionally, the heat flow intensity in the central interaction region has the following relationship with its rebound height and is independent of the overall heat transfer intensity.

Funder

National Science and Technology Major Project

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3