Optical implementation and robustness validation for multi-scale masked autoencoder

Author:

Xue Yizheng1ORCID,Su Xiongfei1ORCID,Zhang Shiyu1ORCID,Yuan Xin1ORCID

Affiliation:

1. Research Center for Industries of the Future (RCIF) and School of Engineering, Westlake University , Hangzhou 310030, Zhejiang, China

Abstract

Masked Autoencoders (MAEs), the state-of-the-art self-supervised neural network architecture in miscellaneous vision tasks, show surprisingly effective potential in reconstructing images distorted by random masking. This paper first introduces an optical implementation of MAEs, employing digital micromirror devices in the optical path to capture partially blocked images. MAEs with multi-scale patches are deployed in the reconstruction procedure. By using an optical-specialized version of the reconstruction network, the system can reconstruct original scenes of high quality. Simulations and experimental measurements showed a significant performance, achieving 24.41 dB average peak-signal-to-noise on Davis2017 datasets and 29.92 dB (masked areas) on authentic captured images under 70% of pixels being blocked. This paves the way for the application of low-bandwidth sampling of high-throughput high-resolution images.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

Reference39 articles.

1. I. Turc , M.-W.Chang, K.Lee, and K.Toutanova, “Well-read students learn better: On the importance of pre-training compact models,” arXiv:1908.08962v2 (2019).

2. An image is worth 16 × 16 words: Transformers for image recognition at scale

3. CvT: Introducing convolutions to vision transformers,2021

4. An empirical study of training self-supervised vision transformers,2021

5. Emerging properties in self-supervised vision transformers,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model-Guided Iterative Diffusion Sampling for NLOS Reconstruction;IEEE Journal of Selected Topics in Quantum Electronics;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3