Passivation capping of InAs surface quantum dots by TMA/Al2O3: PL enhancement and blueshift suppression

Author:

Mohammadi Hanif1ORCID,Roca Ronel C.1ORCID,Zhang Yuwei1ORCID,Lee Hyunju1ORCID,Ohshita Yoshio1ORCID,Iwata Naotaka1ORCID,Kamiya Itaru1ORCID

Affiliation:

1. Toyota Technological Institute , 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan

Abstract

Passivation capping that enhances the photoluminescence (PL) of molecular beam epitaxy (MBE)-grown InAs surface quantum dots (SQDs) is realized by ex situ low-temperature atomic layer deposition (ALD)-grown Al2O3. As the Al2O3 cap thickness increased from 2 to 30 nm, the PL intensity was enhanced by 2.7-fold and the blue shift was suppressed. This is in strong contrast to wet chemistry passivation and in situ GaAs capping by MBE, both of which resulted in significant PL blueshift, due to etching in the former, and In/Ga intermixing and strain in the latter. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) reveal that the Al2O3 cap layer mimics the shape of the underlying SQDs. The cross-sectional transmission electron microscopy (TEM) further reveals that the SQD size and shape remained unchanged after Al2O3 capping, which is in strong contrast to MBE-capping. The passivation mechanisms and native oxide reduction by trimethylaluminum (TMA), including self-clean-up reaction through ligand exchange, are discussed based on the results by x-ray photoelectron spectroscopy (XPS). A detailed comparison between Al2O3 and ZnO cap layers reveals the significance of the cap properties on the SQD size/shape and PL blueshift. While the size/shape of SQDs is preserved by Al2O3 capping, the apex is slightly removed by ZnO capping, resulting in a stronger PL blueshift compared to Al2O3.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3