The impact of boron doping in the tunneling magnetoresistance of Heusler alloy Co2FeAl

Author:

Habiboglu Ali1ORCID,Chandak Yash1ORCID,Khanal Pravin1,Larsen Brecken1ORCID,Zhou Bowei1ORCID,Eckel Carter1,Cutshall Jacob1ORCID,Warrilow Kennedy1ORCID,O’Brien John1ORCID,Hong Brady1ORCID,Schaibley John R.1ORCID,Leroy Brian J.1ORCID,Wang Weigang1ORCID

Affiliation:

1. Department of Physics, University of Arizona , Tucson, Arizona 85721, USA

Abstract

Heusler alloy-based magnetic tunnel junctions have the potential to provide high spin polarization, small damping, and fast switching. In this study, junctions with a ferromagnetic electrode of Co2FeAl were fabricated via room-temperature sputtering on Si/SiO2 substrates. The effect of boron doping on Co2FeAl magnetic tunnel junctions was investigated for different boron concentrations. The surface roughness determined by atomic force microscope, and the analysis of x-ray diffraction measurement on the Co2FeAl thin film reveals critical information about the interface. The Co2FeAl layer was deposited on the bottom and on the top of the insulating MgO layer as two different sample structures to compare the impact of the boron doping on different layers through tunneling magnetoresistance measurements. The doping of boron in Co2FeAl had a large positive impact on the structural and magneto-transport properties of the junctions, with reduced interfacial roughness and substantial improvement in tunneling magnetoresistance. In samples annealed at low temperature, a two-level magnetoresistance was also observed. This is believed to be related to the memristive effect of the tunnel barrier. The findings of this study have practical uses for the design and fabrication of magnetic tunnel junctions with improved magneto-transport properties.

Funder

Defense Advanced Research Projects Agency

Division of Materials Research

Army Research Office

Division of Electrical, Communications and Cyber Systems

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3