Terahertz photodetection in scalable single-layer-graphene and hexagonal boron nitride heterostructures

Author:

Asgari M.1,Viti L.1ORCID,Balci O.2,Shinde S. M.2,Zhang J.2,Ramezani H.2,Sharma S.2,Meersha A.2,Menichetti G.3ORCID,McAleese C.4,Conran B.4,Wang X.4ORCID,Tomadin A.3,Ferrari A. C.2ORCID,Vitiello M. S.1ORCID

Affiliation:

1. NEST, CNR-Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa 56127, Italy

2. Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom

3. Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy

4. AIXTRON Ltd., Buckingway Business Park Anderson Rd., Swavesey, Cambridge CB24 4FQ, United Kingdom

Abstract

The unique optoelectronic properties of single layer graphene (SLG) are ideal for the development of photonic devices across a broad range of frequencies from x rays to microwaves. In the terahertz (THz) frequency range (0.1–10 THz), this has led to the development of optical modulators, nonlinear sources, and photodetectors with state-of-the-art performances. A key challenge is the integration of SLG-based active elements with pre-existing technological platforms in a scalable way, while maintaining performance level unperturbed. Here, we report room temperature THz detectors made of large-area SLG, grown by chemical vapor deposition (CVD) and integrated in antenna-coupled field effect transistors. We selectively activate the photo-thermoelectric detection dynamics, and we employ different dielectric configurations of SLG on Al2O3 with and without large-area CVD hexagonal boron nitride capping to investigate their effect on SLG thermoelectric properties underpinning photodetection. With these scalable architectures, response times ∼5 ns and noise equivalent powers (NEPs) ∼1 nW Hz−1/2 are achieved under zero-bias operation. This shows the feasibility of scalable, large-area, layered material heterostructures for THz detection.

Funder

European Research Council

Consiglio Nazionale delle Ricerche

Engineering and Physical Sciences Research Council

H2020 Marie Skłodowska-Curie Actions

Graphene Flagship

Quantum Flagship

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3