Non-Hermitian skin effect in a phononic beam based on piezoelectric feedback control

Author:

Jin Yabin1,Zhong Wenxin1,Cai Runcheng2ORCID,Zhuang Xiaoying23,Pennec Yan4ORCID,Djafari-Rouhani Bahram4

Affiliation:

1. School of Aerospace Engineering and Applied Mechanics, Tongji University, 200092 Shanghai, China

2. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, 200092 Shanghai, China

3. Department of Mathematics and Physics, Institute of Photonics, Leibniz University Hannover, Hannover, Germany

4. Département de Physique, Institut d'Electronique, de Microélectonique et de Nanotechnologie, UMR CNRS 8520, Université de Lille, 59650 Villeneuve d'Ascq, France

Abstract

Non-Hermitian systems have gained a great deal of interest in various wave problems due their ability of exhibiting unprecedented phenomena such as invisibility, cloaking, enhanced sensing, or the skin effect. The latter manifests itself by the localization of all bulk modes in a specific frequency range at a given boundary, with an unconventional bulk-boundary correspondence. In this work, we propose to realize the skin effect for flexural waves in a non-Hermitian piezoelectric phononic beam with feedback control between a sensor and an actuator in each unit cell. By implementing a non-Hermitian parameter, effective gain and loss can be achieved in the phononic beam characterized by complex eigen frequencies, and non-reciprocal pass bands are obtained. We highlight that the split point separating the gain and loss areas can occur not only at the edges of the Brillouin zones but also inside the same Brillouin zone. We further analyze the influence of the geometric and non-Hermitian parameters on the complex dispersions and the split point. The topology of the complex bands is characterized by the winding number, which supports the skin effect together with the non-reciprocity. The localization degree of the skin mode manifested by the enhanced beam's vibration energy at one boundary is related to the strength of the non-reciprocity, and the skin mode can be always excited regardless of the source position. Our results provide a potential platform to introduce non-Hermiticity into phononic or metamaterial systems with novel functions for elastic waves such as topological insulators, vibration attenuation or amplification, and energy harvesting.

Funder

National Natural Science Foundation of China

China Association for Science and Technology

Science and Technology Innovation Plan Of Shanghai Science and Technology Commission

E-Institutes of Shanghai Municipal Education Commission

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3