Charge pumping in h-BN-encapsulated graphene driven by surface acoustic waves

Author:

Nichols Dublin M.1ORCID,Berg Jameson G.2,Taniguchi Takashi3ORCID,Watanabe Kenji4ORCID,Dhagat Pallavi5,Deshpande Vikram V.2ORCID,Jander Albrecht5,Minot Ethan D.1ORCID

Affiliation:

1. Department of Physics, Oregon State University 1 , Corvallis, Oregon 97331, USA

2. Department of Physics and Astronomy, University of Utah 2 , Salt Lake City, Utah 84112, USA

3. Research Center for Materials Nanoarchitectonics, National Institute for Materials Science 3 , 1-1 Namiki, Tsukuba 305-0044, Japan

4. Research Center for Electronic and Optical Materials, National Institute for Materials Science 4 , 1-1 Namiki, Tsukuba 305-0044, Japan

5. School of Electrical Engineering and Computer Science, Oregon State University 5 , Corvallis, Oregon 97331, USA

Abstract

Surface acoustic waves (SAWs) on piezoelectric insulators can generate dynamic periodic potentials inside one-dimensional and two-dimensional materials. These periodic potentials have been utilized or proposed for various applications, including acoustoelectric charge pumping. In this study, we investigate acoustoelectric charge pumping in graphene with very low electrostatic disorder. By employing a graphite top gate on boron-nitride-encapsulated graphene, we adjust the graphene carrier concentration over a broad range, enabling us to examine the acoustoelectric signal in both mixed-carrier and single-carrier regimes. We discuss the benefits of h-BN-encapsulated graphene for charge pumping applications and introduce a model that describes the acoustoelectric signal across all carrier concentrations, including at the charge neutrality point. This quantitative model will support future SAW-enabled explorations of phenomena in low-dimensional materials and guide the design of novel SAW sensors.

Funder

National Science Foundation

National Nanotechnology Coordinating Office

Japan Society for the Promotion of Science

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3