Real-space solution to the electronic structure problem for nearly a million electrons

Author:

Dogan Mehmet1ORCID,Liou Kai-Hsin2ORCID,Chelikowsky James R.123ORCID

Affiliation:

1. Center for Computational Materials, Oden Institute for Computational Engineering and Sciences, University of Texas at Austin 1 , Austin, Texas 78712, USA

2. McKetta Department of Chemical Engineering, University of Texas at Austin 2 , Austin, Texas 78712, USA

3. Department of Physics, University of Texas at Austin 3 , Austin, Texas 78712, USA

Abstract

We report a Kohn–Sham density functional theory calculation of a system with more than 200 000 atoms and 800 000 electrons using a real-space high-order finite-difference method to investigate the electronic structure of large spherical silicon nanoclusters. Our system of choice was a 20 nm large spherical nanocluster with 202 617 silicon atoms and 13 836 hydrogen atoms used to passivate the dangling surface bonds. To speed up the convergence of the eigenspace, we utilized Chebyshev-filtered subspace iteration, and for sparse matrix–vector multiplications, we used blockwise Hilbert space-filling curves, implemented in the PARSEC code. For this calculation, we also replaced our orthonormalization + Rayleigh–Ritz step with a generalized eigenvalue problem step. We utilized all of the 8192 nodes (458 752 processors) on the Frontera machine at the Texas Advanced Computing Center. We achieved two Chebyshev-filtered subspace iterations, yielding a good approximation of the electronic density of states. Our work pushes the limits on the capabilities of the current electronic structure solvers to nearly 106 electrons and demonstrates the potential of the real-space approach to efficiently parallelize large calculations on modern high-performance computing platforms.

Funder

National Science Foundation

U.S. Department of Energy

Welch Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special Topic on High Performance Computing in Chemical Physics;The Journal of Chemical Physics;2023-12-01

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3