Hybrid mechanism of electrical breakdown in ferroelectric materials under high-pressure shock loading

Author:

Shkuratov Sergey I.1ORCID,Baird Jason12ORCID,Antipov Vladimir G.1,Chase Jay B.1,Lynch Christopher S.3ORCID

Affiliation:

1. Loki Incorporated 1 , Norwood, Missouri 65717, USA

2. Department of Mining and Nuclear Engineering, Missouri University of Science and Technology 2 , Rolla, Missouri 65409-0450, USA

3. Bourns College of Engineering, University of California at Riverside 3 , California 92521, USA

Abstract

The unique ability of ferroelectrics to generate high voltage under shock loading is limited by electrical breakdown within the shock-compressed ferroelectric material. Breakdown is a hybrid process of initiation and growth. The possible mechanisms of electrical breakdown in ferroelectric films and bulk ceramics subjected to high-pressure shock loading are discussed and experiments designed to elucidate which mechanisms govern breakdown. Gigapascal shock loading experiments were performed on poled Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric film specimens in the range of 32–156 μm thickness to determine the dependence of the breakdown field on thickness and on film specimens in the range of 4–16 mm length to determine the dependence of the breakdown field on the duration of shock compression. The resulting breakdown-field vs thickness and breakdown-field vs shock transit time dependencies are consistent with a hybrid electron emission initiation and Joule heating microchannel growth mechanism. Further analysis of data previously obtained on shock-compressed 0.27Pb(In1/2Nb1/2)O3–0.47Pb(Mg1/3Nb2/3)O3–0.26PbTiO3 ferrvoelectric single crystals and Pb(Zr0.65Ti0.35)O3, Pb0.99(Zr0.52Ti0.48)0.99Nb0.01O3, Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 bulk ceramics is consistent with this dual mechanism. It appears that neither chemical composition nor microstructure (single crystal vs polycrystalline) of the ferroelectric material has a significant effect on the breakdown mechanism in shocked ferroelectrics.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3