Same-sided successive-shock HED instability experiments

Author:

Merritt E. C.1ORCID,Doss F. W.1ORCID,Stefano C. A. Di1ORCID,Sacks R. F.1ORCID,Rasmus A. M.1ORCID,Levesque J. M.1ORCID,Flippo K. A.1ORCID,Robey H.1ORCID,Schmidt D. W.1ORCID,Christiansen N. S.1ORCID,Millot M.2ORCID,Kot L.1,Perry T.1ORCID,Meyerhofer D. D.1ORCID

Affiliation:

1. Los Alamos National Laboratory 1 , Los Alamos, New Mexico 87545, USA

2. Lawrence Livermore National Laboratory 2 , Livermore, California 94550, USA

Abstract

Inertial confinement fusion (ICF) and high-energy density (HED) physics experiments experience complicated forcing for instability growth and mix due to the ubiquitous presence of multiple shocks interacting with perturbations on multiple material interfaces. One common driver of instability growth is successive shocks from the same direction. However, there is a severe lack of analytic work and modeling validation for same-sided successive shocks since they are extremely difficult to achieve with conventional (non-HED) drivers. Successive shocks access a large instability parameter space; idealized fluid theory [K. O. Mikaelian, Phys. Rev. A 31, 410 (1985)] predicts 15 different interface evolution scenarios for a sinusoidal perturbation. Growth becomes more complex for multi-mode, compressible HED systems. The Mshock campaign is the first experiment in any fluid regime to probe a wide portion of successive shock parameter space. This is enabled by our development of a hybrid direct/indirect drive platform capable of creating independently controllable successive shocks on the National Ignition Facility. These experiments have delivered the first data capable of rigorously challenging our models and their ability to accurately capture Richtmyer–Meshkov growth under successive shocks. Single-mode and two-mode experiments have successfully demonstrated the ability to access and control the various growth scenarios of the shocked interface, including re-inversion, freeze out, and continued growth. Simulations and theoretical modeling are shown to accurately capture the experimental observations in the linear growth phase, giving us confidence in our ICF/HED design codes.

Funder

National Nuclear Security Administration

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3