Physics-informed graph neural networks enhance scalability of variational nonequilibrium optimal control

Author:

Yan Jiawei1ORCID,Rotskoff Grant M.1ORCID

Affiliation:

1. Department of Chemistry, Stanford University, Stanford, California 94305, USA

Abstract

When a physical system is driven away from equilibrium, the statistical distribution of its dynamical trajectories informs many of its physical properties. Characterizing the nature of the distribution of dynamical observables, such as a current or entropy production rate, has become a central problem in nonequilibrium statistical mechanics. Asymptotically, for a broad class of observables, the distribution of a given observable satisfies a large deviation principle when the dynamics is Markovian, meaning that fluctuations can be characterized in the long-time limit by computing a scaled cumulant generating function. Calculating this function is not tractable analytically (nor often numerically) for complex, interacting systems, so the development of robust numerical techniques to carry out this computation is needed to probe the properties of nonequilibrium materials. Here, we describe an algorithm that recasts this task as an optimal control problem that can be solved variationally. We solve for optimal control forces using neural network ansatz that are tailored to the physical systems to which the forces are applied. We demonstrate that this approach leads to transferable and accurate solutions in two systems featuring large numbers of interacting particles.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Reference70 articles.

1. Long-Range Order in a Two-Dimensional DynamicalXYModel: How Birds Fly Together

2. Flocks, herds, and schools: A quantitative theory of flocking

3. A. Lazarescu, “Exact large deviations of the current in the asymmetric simple exclusion process with open boundaries,” Ph.D. thesis, Institut de Physique Théorique, CEA-Saclay, 2015.

4. Statistical mechanics of active Ornstein-Uhlenbeck particles

5. Irreversibility and Biased Ensembles in Active Matter: Insights from Stochastic Thermodynamics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3