Surface-charge-mobility-modulated electrokinetic energy conversion in graphene nanochannels

Author:

Liu Yongbo12ORCID,Xing Jingnan3,Pi Jiandong12ORCID

Affiliation:

1. College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022, People's Republic of China

2. Inner Mongolia Center for Applied Mathematics, Hohhot 010022, People's Republic of China

3. Pioneer College, Inner Mongolia University, Hohhot 010070, People's Republic of China

Abstract

In recent years, electrokinetic energy conversion for pressure-driven flow through hydrophobic nanochannels has attracted increasing attention from numerous researchers. However, the reported electrokinetic energy conversion efficiencies may be overestimated owing to neglect of the surface charge mobility effect of hydrophobic nanochannels. In fact, both the effective slip length and the induced streaming potential are influenced by the surface charge mobility. In this paper, a theoretical model for electrokinetic energy conversion through graphene nanochannels is developed with consideration of the influence of surface charge mobility. The surface charge density σs varies from very low to considerably high. A numerical solution to the electric potential is obtained by using the finite difference method. We also derive analytical solutions for two limiting cases, namely, the case with a low zeta potential and the case without considerable electric double layer overlap. Our results reveal that consideration of the surface charge mobility leads to a 44% reduction in the maximum conversion efficiency. The predicted maximum efficiency is approximately 5.9% at σs = −0.0162 C/m2. Our results may prove useful for predicting and optimizing the electrokinetic conversion efficiency in hydrophobic nanochannels.

Funder

Natural Science Foundation of Inner Mongolia

National Natural Science Foundation of China

Foundation of Inner Mongolia Normal University

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3