Phase-locking flows between orthogonally stretching parallel plates

Author:

Wang B.1ORCID,Ayats R.2ORCID,Meseguer A.1ORCID,Marques F.1ORCID

Affiliation:

1. Department of Physics, Universitat Politècnica de Catalunya, Barcelona 08034, Spain

2. Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria

Abstract

In this paper, we explore the stability and dynamical relevance of a wide variety of steady, time-periodic, quasiperiodic, and chaotic flows arising between orthogonally stretching parallel plates. We first explore the stability of all the steady flow solution families formerly identified by Ayats et al. [“Flows between orthogonally stretching parallel plates,” Phys. Fluids 33, 024103 (2021)], concluding that only the one that originates from the Stokesian approximation is actually stable. When both plates are shrinking at identical or nearly the same deceleration rates, this Stokesian flow exhibits a Hopf bifurcation that leads to stable time-periodic regimes. The resulting time-periodic orbits or flows are tracked for different Reynolds numbers and stretching rates while monitoring their Floquet exponents to identify secondary instabilities. It is found that these time-periodic flows also exhibit Neimark–Sacker bifurcations, generating stable quasiperiodic flows (tori) that may sometimes give rise to chaotic dynamics through a Ruelle–Takens–Newhouse scenario. However, chaotic dynamics is unusually observed, as the quasiperiodic flows generally become phase-locked through a resonance mechanism before a strange attractor may arise, thus restoring the time-periodicity of the flow. In this work, we have identified and tracked four different resonance regions, also known as Arnold tongues or horns. In particular, the 1 : 4 strong resonance region is explored in great detail, where the identified scenarios are in very good agreement with normal form theory.

Funder

Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España

Ministerio de Ciencia e Innovación

Generalitat de Catalunya

China Scholarship Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3