Single-shot all-digital approach for measuring the orbital angular momentum spectrum of light

Author:

Otte E.123ORCID,Bobkova V.1ORCID,Trinschek S.4ORCID,Rosales-Guzmán C.5ORCID,Denz C.1ORCID

Affiliation:

1. Institute of Applied Physics, University of Muenster, Corrensstr. 2/4, 48149 Muenster, Germany

2. Geballe Laboratory for Advance Materials, Stanford University, 476 Lomita Mall, Stanford, California 94305, USA

3. Center for Soft Nanoscience, University of Muenster, Busso-Peus-Str. 10, 48149 Muenster, Germany

4. Department of Engineering Physics, Münster University of Applied Sciences, Stegerwaldstraße 39, 48565 Steinfurt, Germany

5. Centro de Investigaciones en Óptica, A.C., 37150 León, Guanajuato, Mexico

Abstract

Light fields carrying orbital angular momentum (OAM) offer a broad variety of applications in which especially an accurate determination of the respective OAM spectrum, i.e., unraveling the content of OAM by its topological charge ℓ, has become a main subject. Even though various techniques have been proposed to measure the OAM spectrum of such modes, many of them fail if optical vortices have to be considered in perturbed or dynamically changing experimental systems. Here, we put forward a novel technique capable of determining the OAM spectrum of light by a single measurement shot, which specifically applies to those fields that have been distorted. Experimentally, our technique only requires to interfere the perturbed light field with a reference field. From the resulting intensity pattern, the accurate OAM spectrum is determined in an all-digital way. We demonstrate our novel approach by numerical simulations and a proof-of-concept experiment employing a model ball lens as an exemplary disturbing object.

Funder

Deutsche Forschungsgemeinschaft

European UnionHorizon 2020 Program

Deutscher Akademischer Austauschdienst

Geballe Laboratory for Advanced Materials, Stanford University

Bundesministerium für Bildung und Forschung

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3