Mixed convective magnetohydrodynamic and thermally radiative flow of reactive couple stress MWCNT–Ag/C2H6O2 hybrid nanofluid in a porous vertical channel: Entropy analysis

Author:

Mushahary PungjaORCID,Surender OntelaORCID

Abstract

This paper is concerned with the analysis of the mixed convective magnetohydrodynamic (MHD) flow of a reactive couple stress multi-walled carbon nanotube −Ag/C2H6O2 hybrid nanofluid in a porous vertical channel subjected to quadratic thermal radiation along with a uniform inclined magnetic field applied to the channel walls. The flow is driven by the pressure gradient force and the buoyancy force, which is modeled based on the nonlinear Boussinesq approximation. The temperature-dependent reaction rate of the reactant molecule is derived using the Arrhenius law. The momentum and energy equations that govern the system are modeled in consideration of slip and convective conditions. The governing equations are non-dimensionalized by applying relevant dimensionless parameters and are solved using the homotopy analysis method (HAM). To analyze the irreversibilities in the system, the entropy generation number and the Bejan number are defined. Different important physical parameters developing in the system are considered for analysis, and their effects are scrutinized on the velocity and temperature profiles along with entropy generation. The emphasis is given to the concentration of nanoparticles along with the parameters arising due to the reactions of the fluid, buoyancy force, inclined magnetic field, thermal radiation, and porous material. The analysis reveals that the velocity and temperature of the fluid lowers with a higher concentration of nanoparticles, radiation parameter, and Hartmann number, whereas develops for the higher slip parameters and inclination of the magnetic field. The entropy generation rate increases with rising slip parameters and depletes for higher nanoparticle concentration, radiation parameter, Hartmann number, and inclination angle. The irreversibility in the system remains dominant due to heat transfer with higher Frank-Kameneskii and activation energy parameters, Hartmann number, and angle of inclination.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3