Si1−xyGeySnx alloy formation by Sn ion implantation and flash lamp annealing

Author:

Steuer O.12ORCID,Michailow M.3ORCID,Hübner R.1ORCID,Pyszniak K.4ORCID,Turek M.4ORCID,Kentsch U.1ORCID,Ganss F.1ORCID,Khan M. M.1,Rebohle L.1ORCID,Zhou S.1ORCID,Knoch J.3ORCID,Helm M.15ORCID,Cuniberti G.2ORCID,Georgiev Y. M.16ORCID,Prucnal S.1ORCID

Affiliation:

1. Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf 1 , Bautzner Landstrasse 400, 01328 Dresden, Germany

2. Institute of Materials Science and Max Bergmann Center, Technische Universität Dresden 2 , 01069 Dresden, Germany

3. Institute of Semiconductor Electronics, Rheinisch-Westfälische Technische Hochschule Aachen 3 , 52074 Aachen, Germany

4. Institute of Physics, Maria Curie-Sklodowska University in Lublin 4 , M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland

5. Center for Advancing Electronics Dresden, Technische Universität Dresden 5 , 01062 Dresden, Germany

6. Institute of Electronics, Bulgarian Academy of Sciences 6 , 72, Tsarigradsko Chausse Blvd., 1784 Sofia, Bulgaria

Abstract

For many years, Si1−yGey alloys have been applied in the semiconductor industry due to the ability to adjust the performance of Si-based nanoelectronic devices. Following this alloying approach of group-IV semiconductors, adding tin (Sn) into the alloy appears as the obvious next step, which leads to additional possibilities for tailoring the material properties. Adding Sn enables effective bandgap and strain engineering and can improve the carrier mobilities, which makes Si1−x−yGeySnx alloys promising candidates for future opto- and nanoelectronics applications. The bottom-up approach for epitaxial growth of Si1−x−yGeySnx, e.g., by chemical vapor deposition and molecular beam epitaxy, allows tuning the material properties in the growth direction only; the realization of local material modifications to generate lateral heterostructures with such a bottom-up approach is extremely elaborate, since it would require the use of lithography, etching, and either selective epitaxy or epitaxy and chemical–mechanical polishing, giving rise to interface issues, non-planar substrates, etc. This article shows the possibility of fabricating Si1−x−yGeySnx alloys by Sn ion beam implantation into Si1−yGey layers followed by millisecond-range flash lamp annealing (FLA). The materials are investigated by Rutherford backscattering spectrometry, micro-Raman spectroscopy, x-ray diffraction, and transmission electron microscopy. The fabrication approach was adapted to ultra-thin Si1−yGey layers on silicon-on-insulator substrates. The results show the fabrication of single-crystalline Si1−x−yGeySnx with up to 2.3 at. % incorporated Sn without any indication of Sn segregation after recrystallization via FLA. Finally, we exhibit the possibility of implanting Sn locally in ultra-thin Si1−yGey films by masking unstructured regions on the chip, thus demonstrating the realization of vertical as well as lateral Si1−x−yGeySnx heterostructures by Sn ion implantation and flash lamp annealing.

Funder

Bundesministerium für Bildung und Forschung

Helmholtz-Zentrum Dresden-Rossendorf

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3