Affiliation:
1. Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
Abstract
In this paper, we introduce a data-driven modeling approach for dynamics problems with latent variables. The state-space of the proposed model includes artificial latent variables, in addition to observed variables that can be fitted to a given data set. We present a model framework where the stability of the coupled dynamics can be easily enforced. The model is implemented by recurrent cells and trained using backpropagation through time. Numerical examples using benchmark tests from order reduction problems demonstrate the stability of the model and the efficiency of the recurrent cell implementation. As applications, two fluid–structure interaction problems are considered to illustrate the accuracy and predictive capability of the model.
Funder
National Science Foundation
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献