Theoretical model and simulations to extract chemical reaction parameters ruling resistive switching in sputter-deposited silicon oxide film on Si substrate

Author:

Omura Yasuhisa12ORCID,Mallik Abhijit3ORCID

Affiliation:

1. ACA&C 1 , Kanagawa, Japan

2. Department of Electric, Electronics and Information Engineering, Kansai University 2 , Japan

3. Department of Electronic Science, University of Calcutta 3 , Kolkata, West Bengal, India

Abstract

This paper proposes a physics-based model based on possible chemical processes responsible for the resistive switching of sputter-deposited silicon oxide films. Diffusion–reaction differential equations are utilized to pursue physical and chemical origins of the switching phenomenon. Based on the theoretical model, the chemical reaction process is analytically and numerically solved, and an analytical model is proposed to elucidate the phenomenon. Theoretical simulation results are examined from the point of view of suitability of parameter values, and the analytical model is used to interpret the simulation results. Simulation results greatly assist in understanding the switching processes of silicon oxide films; that is, the diffusion processes of hydrogen and water molecules primarily rule the switching processes, and the displacement of oxygen atoms is assisted by those processes. The analytical model predicts that high-speed switching requires a large number of traps in the oxide, a relatively large binding energy, and a low leakage current; all of them can easily be satisfied for sputter-deposited oxide films. A combination of the theoretical simulation model and the analytical model gives a guideline of how the sputter-deposited silicon oxide films can be made suitable for high-speed resistive switching applications.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3