Extension of natural reaction orbital approach to multiconfigurational wavefunctions

Author:

Ebisawa Shuichi1,Tsutsumi Takuro23ORCID,Taketsugu Tetsuya24ORCID

Affiliation:

1. Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan

2. Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

3. L-Station, Creative Research Institution (CRI), Hokkaido University, Sapporo 060-0812, Japan

4. Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan

Abstract

Recently, we proposed a new orbital analysis method, natural reaction orbital (NRO), which automatically extracts orbital pairs that characterize electron transfer in reaction processes by singular value decomposition of the first-order orbital response matrix to the nuclear coordinate displacements [Ebisawa et al., Phys. Chem. Chem. Phys. 24, 3532 (2022)]. NRO analysis along the intrinsic reaction coordinate (IRC) for several typical chemical reactions demonstrated that electron transfer occurs mainly in the vicinity of transition states and in regions where the energy profile along the IRC shows shoulder features, allowing the reaction mechanism to be explained in terms of electron motion. However, its application has been limited to single configuration theories such as Hartree–Fock theory and density functional theory. In this work, the concept of NRO is extended to multiconfigurational wavefunctions and formulated as the multiconfiguration NRO (MC-NRO). The MC-NRO method is applicable to various types of electronic structure theories, including multiconfigurational theory and linear response theory, and is expected to be a practical tool for extracting the essential qualitative features of a broad range of chemical reactions, including covalent bond dissociation and chemical reactions in electronically excited states. In this paper, we calculate the IRC for five basic chemical reaction processes at the level of the complete active space self-consistent field theory and discuss the phenomenon of electron transfer by performing MC-NRO analysis along each IRC. Finally, issues and future prospects of the MC-NRO method are discussed.

Funder

Core Research for Evolutional Science and Technology

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The nature of the chemical bond;The Journal of Chemical Physics;2023-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3