Characteristics of coexisting attractors and ghost orbiting in an optomechanical microresonator

Author:

Chapman D. M.1ORCID,Burton E. K. T.1ORCID,Hall J. R.1ORCID,Rosenberger A. T.1ORCID,Bandy D. K.1ORCID

Affiliation:

1. Department of Physics, Oklahoma State University , Stillwater, Oklahoma 74078, USA

Abstract

We explore the nonlinear interactions of an optomechanical microresonator driven by two external optical signals. Optical whispering-gallery waves are coupled to acoustic surface waves of a fused silica medium in the equatorial plane of a generic microresonator. The system exhibits coexisting attractors whose behaviors include limit cycles, steady states, tori, quasi-chaos, and fully developed chaos with ghost orbits of a known attractor. Bifurcation diagrams demonstrate the existence of self-similarity, periodic windows, and coexisting attractors and show high-density lines within chaos that suggests a potential ghost orbit. In addition, the Lyapunov spectral components as a function of control parameter illuminate the dynamic nature of attractors and periodic windows with symmetric and asymmetric formations, their domains of existence, their bifurcations, and other nonlinear effects. We show that the power-shift method can access accurately and efficiently attractors in the optomechanical system as it does in other nonlinear systems. To test whether the ghost orbit is the link between two attractors interrupted by chaos, we examine the elements of the bifurcation diagrams as a function of control parameter. We also use detuning as a second control parameter to avoid the chaotic region and clarify that the two attractors are one.

Funder

National Science Foundation

Publisher

AIP Publishing

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3