Exploring the possibility of a complex-valued non-Gaussianity measure for quantum states of light

Author:

Pizzimenti Andrew J.1ORCID,Dhara Prajit1ORCID,Van Herstraeten Zacharie1ORCID,Cheng Sijie2ORCID,Gagatsos Christos N.2ORCID

Affiliation:

1. Wyant College of Optical Sciences, The University of Arizona 1 , 1630 E. University Blvd., Tucson, Arizona 85721, USA

2. Department of Electrical and Computer Engineering, The University of Arizona 2 , Tucson, Arizona 85721, USA

Abstract

We consider a quantity that is the differential relative entropy between a generic Wigner function and a Gaussian one. We prove that said quantity is minimized with respect to its Gaussian argument, if both Wigner functions in the argument of the Wigner differential entropy have the same first and second moments, i.e., if the Gaussian argument is the Gaussian associate of the other, generic Wigner function. Therefore, we introduce the differential relative entropy between any Wigner function and its Gaussian associate and we examine its potential as a non-Gaussianity measure. The proposed, phase-space based non-Gaussianity measure is complex-valued, with its imaginary part possessing the physical meaning of the Wigner function’s negative volume. At the same time, the real part of this measure provides an extra layer of information, rendering the complex-valued quantity a measure of non-Gaussianity, instead of a quantity pertaining only to the negativity of the Wigner function. We prove that the measure (both the real and imaginary parts) is faithful, invariant under Gaussian unitary operations, and find a sufficient condition on its monotonic behavior under Gaussian channels. We provide numerical results supporting the aforesaid condition. In addition, we examine the measure’s usefulness to non-Gaussian quantum state engineering with partial measurements.

Funder

National Science Foundation, FET

National Science Foundation Engineering Research Center for Quantum Networks

Belgian American Educational Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3