Enhanced and tunable near-field thermophotovoltaics driven by hybrid polaritons

Author:

Li Lin1,Wu Xiaohu2ORCID,Liu Haotuo3,Yang Zhimin4,Yu Kun1ORCID

Affiliation:

1. Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University 1 , Xinxiang 453007, People's Republic of China

2. Shandong Institute of Advanced Technology 2 , Jinan 250100, People's Republic of China

3. Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology 3 , Harbin 150080, People's Republic of China

4. School of Physics and Electronic Information, Yan'an University 4 , Yan'an 716000, People's Republic of China

Abstract

Near-field thermophotovoltaics (NF-TPV) offers the potential for achieving elevated power density and conversion efficiency by leveraging the amplification of thermal radiation within a nanoscale gap. Here, we propose an NF-TPV device with a sandwich emitter composed of calcite film and graphene layer. The results show that this sandwich configuration can significantly enhance output power, outperforming monolayer-graphene-covered heterostructures and the single calcite film. These are because the sandwich configuration can enhance hybrid polaritons, which are formed by the coupling between surface plasmon polaritons in graphene and hyperbolic phonon polaritons in calcite. In addition, the effects of graphene chemical potentials on the performance of NF-TPV devices are also studied. The tunable power density range of the sandwich structure can be up to 3.26 times that of other structures by altering the chemical potential of graphene. The findings presented here may unpack a promising path for enhancing and manipulating the performance of NF-TPV at the nano- and microscale.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Taishan Scholar Project of Shandong Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3