Advancing the process understanding and localization in jet electrochemical machining with electrolyte confinement through fluid dynamic simulations and experiments

Author:

Ye ZhisenORCID,Chen XiaoleiORCID,Lin Yiming,Cheng Liang,Arshad Muhammad Hazak1ORCID,Saxena Krishna Kumar1ORCID,Zhang Yongjun

Affiliation:

1. Micro- and Precision Engineering Group, Manufacturing Processes and Systems (MaPS), Department of Mechanical Engineering, KU Leuven 3 , Leuven 3001, Belgium

Abstract

Functionality-oriented micro-structures, such as micro-dimples and grooves, are widely used in tribology and heat transfer. Jet electrochemical machining (JEM) is effective to fabricate micro-structures on metallic surfaces. However, in traditional JEM, the unrestricted electrolyte flowing can induce stray corrosion on workpiece, and thus, both surface quality and machining localization are reduced. In this paper, a novel electrolyte-confinement technique is proposed for JEM, a high-density liquid (perfluorotripropylamine, FTPA) is used to confine the electrolyte flowing region on workpiece when electrolyte exits nozzle, facilitating reduction in stray corrosion on workpiece and overcut of micro-structures. A multi-physics model including two-phase flow field and electric field is developed to analyze the electrolyte confined by FTPA, and both simulation and observation results show that the area of electrolyte flowing on the workpiece is confined well by FTPA, and the current density distribution becomes concentrated, which enhances the machining localization. Compared to traditional JEM, the etch factor of micro-dimple is improved by 2.5 times and there is no stray corrosion. The material removal rate is increased due to the concentration of current distribution on the workpiece surface. Furthermore, profile evolution of micro-dimples revealed that with feed depth increased, FTPA could flow into the micro-dimple to protect the sidewall from continuous dissolution, thus forming vertical sidewall. Additionally, electrolyte flowing region is still confined during the scanning motion of nozzle, and the etch factor increases from 0.41 to 8.8 compared to traditional JEM. Moreover, increasing inter-electrode gap could reduce electrolyte flowing region on workpiece, further enhancing machining localization.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Stake Key Laboratory of Precision Electronic Manufacturing Technology and Equipment

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3