Four-dimensional hemodynamic prediction of abdominal aortic aneurysms following endovascular aneurysm repair combining physics-informed PointNet and quadratic residual networks

Author:

Kang JiahengORCID,Li GaoyangORCID,Che YueORCID,Cao XiranORCID,Wan Mingyu,Zhu JingORCID,Luo MingyaoORCID,Zhang XuelanORCID

Abstract

Hemodynamic parameters can provide surveillance for the risk of complication of abdominal aortic aneurysms following endovascular aneurysm repair (EVAR). However, obtaining hemodynamic parameters through computational fluid dynamics (CFD) has disadvantages of complex operation and high computational costs. Recently proposed physics-informed neural networks offer novel solutions to solve these issues by leveraging fundamental physical conservation principles of fluid dynamics. Based on cardiovascular point datasets, we further propose an integration algorithm combining physics-informed PointNet and quadratic residual networks (PIPN-QN) that is capable of mapping sparse point clouds to four-dimensional hemodynamic parameters. The implemented workflow includes generating point cloud datasets through CFD simulation and dynamically reproducing the three-dimensional flow field in the spatial and temporal dimensions through deep learning. Compared with physics-informed PointNet (PIPN), the PIPN-QN reduces the mean square error of pressure and wall shear stress by around 32.1% and 33.1% and anticipates hemodynamic parameters in less than 2 s (14 400 times faster than CFD). To address the challenge of big data requirements, we quantify the universal flow field using a reduced number of supervision points, as opposed to the large number of point clouds generated from the CFD simulation. The PIPN-QN can meet the real-time hemodynamic parameters obtained from patients with abdominal aortic aneurysms following EVAR with higher accuracy, faster speed, and lower training costs.

Funder

National Nature Science Fonudation of China

Project funded by China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

National High Level Hospital Clinical Research Funding

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3