Affiliation:
1. Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
Abstract
Machine learning is an important tool in the study of the phase behavior from molecular simulations. In this work, we use un-supervised machine learning methods to study the phase behavior of two off-lattice models, a binary Lennard-Jones (LJ) mixture and the Widom–Rowlinson (WR) non-additive hard-sphere mixture. The majority of previous work has focused on lattice models, such as the 2D Ising model, where the values of the spins are used as the feature vector that is input into the machine learning algorithm, with considerable success. For these two off-lattice models, we find that the choice of the feature vector is crucial to the ability of the algorithm to predict a phase transition, and this depends on the particular model system being studied. We consider two feature vectors, one where the elements are distances of the particles of a given species from a probe (distance-based feature) and one where the elements are +1 if there is an excess of particles of the same species within a cut-off distance and −1 otherwise (affinity-based feature). We use principal component analysis and t-distributed stochastic neighbor embedding to investigate the phase behavior at a critical composition. We find that the choice of the feature vector is the key to the success of the unsupervised machine learning algorithm in predicting the phase behavior, and the sophistication of the machine learning algorithm is of secondary importance. In the case of the LJ mixture, both feature vectors are adequate to accurately predict the critical point, but in the case of the WR mixture, the affinity-based feature vector provides accurate estimates of the critical point, but the distance-based feature vector does not provide a clear signature of the phase transition. The study suggests that physical insight into the choice of input features is an important aspect for implementing machine learning methods.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy