Affiliation:
1. Sandia National Laboratories , Albuquerque, New Mexico 87185-0840, USA
Abstract
A first-of-its-kind model calibration was performed using Sandia National Laboratories’ high-throughput initiation (HTI) experiment for two types of vapor-deposited explosive films consisting of hexanitrostilbene (HNS) or pentaerythritol tetranitrate (PETN). These films exhibit prompt initiation, and they reach steady detonation at sub-millimeter length scales. Following prior work on HNS, we test the hypothesis of approximating these explosive films as fine-grained homogeneous solids with simple Arrhenius kinetics burn models. The model calibration process is described herein using a single-step as well as a two-step Arrhenius rate law, and it consists of systematic parameter sampling leading to a reduction in the model degrees of freedom. Multiple local minima are observed; results are given for seven different optimized parameter sets. Each model set is further evaluated in a two-dimensional simulation of the critical failure thickness for a sustained detonation. Overall, the two-step Arrhenius kinetics model captures the observed behavior for HNS; however, neither model produces a good fit to the PETN data. We hypothesize that the HTI results for PETN correspond to a heterogeneous response, owing to the smaller reaction zone of PETN compared to HNS (i.e., it does not homogenize the fine-grained hot spots as well). Future work should consider using the ignition and growth model for PETN, as well as other reactive burn models such as xHVRB, AWSD, PiSURF, and CREST.
Funder
Sandia National Laboratories
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献