Reactive burn model calibration using high-throughput initiation experiments at sub-millimeter length scales

Author:

Kittell D. E.1ORCID,Knepper R.1ORCID,Tappan A. S.1ORCID

Affiliation:

1. Sandia National Laboratories , Albuquerque, New Mexico 87185-0840, USA

Abstract

A first-of-its-kind model calibration was performed using Sandia National Laboratories’ high-throughput initiation (HTI) experiment for two types of vapor-deposited explosive films consisting of hexanitrostilbene (HNS) or pentaerythritol tetranitrate (PETN). These films exhibit prompt initiation, and they reach steady detonation at sub-millimeter length scales. Following prior work on HNS, we test the hypothesis of approximating these explosive films as fine-grained homogeneous solids with simple Arrhenius kinetics burn models. The model calibration process is described herein using a single-step as well as a two-step Arrhenius rate law, and it consists of systematic parameter sampling leading to a reduction in the model degrees of freedom. Multiple local minima are observed; results are given for seven different optimized parameter sets. Each model set is further evaluated in a two-dimensional simulation of the critical failure thickness for a sustained detonation. Overall, the two-step Arrhenius kinetics model captures the observed behavior for HNS; however, neither model produces a good fit to the PETN data. We hypothesize that the HTI results for PETN correspond to a heterogeneous response, owing to the smaller reaction zone of PETN compared to HNS (i.e., it does not homogenize the fine-grained hot spots as well). Future work should consider using the ignition and growth model for PETN, as well as other reactive burn models such as xHVRB, AWSD, PiSURF, and CREST.

Funder

Sandia National Laboratories

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3