Large eddy simulation of ship airflow control with steady Coanda effect

Author:

Xu Kewei1ORCID,Su Xinchao1ORCID,Bensow Rickard1ORCID,Krajnovic Sinisa1ORCID

Affiliation:

1. Department of Mechanics and Maritime Sciences, Chalmers University of Technology , Gothenburg 412 96, Sweden

Abstract

This paper numerically studies the steady Coanda effect for drag reduction and airwake manipulations on the Chalmers ship model (CSM) using large eddy simulation with wall-adapting local-eddy viscosity model. Numerical methods are validated by experimental data acquired from the baseline CSM. In creating the flow control model, the hanger base of the baseline CSM is modified with Coanda surfaces and injection slots along its roof edge and two side edges. Four representative cases are studied: a no-jet case and three cases with the same momentum coefficient of the jet flow activated at different locations (roof, sides, and combined). The results show that the four cases have various performances in drag reduction and vortex structures on the deck. They are also different in mean and turbulent quantities as well as POD (proper orthogonal decomposition) modes in their airwake. It is found that the roof-jet has a stronger Coanda effect and is more vectored toward the low-speed area (LSA) on the deck than the side-jets that detach earlier from the Coanda surface. The energization process is, therefore, different where the roof-jet is more effective that directly brings high momentum to LSA and side-jets manipulate shear layers for mixing enhancement. The cases with roof-jet achieve better mitigation of flow re-circulation and higher recovery of streamwise velocity with lower turbulent fluctuation in the airwake. POD analysis suggests that the roof-jet can stabilize the wake.

Funder

Chalmers Tekniska Högskola

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference48 articles.

1. The aerodynamics of ship superstructures,1991

2. Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization;J. Fluid Mech.,1978

3. Time-dependent behavior of a reattaching shear layer;AIAA J.,1987

4. Active and passive flow control over the flight deck of small naval vessels,2005

5. Simulation of simplified-frigate airwakes using a lattice-Boltzmann method;J. Wind Eng. Ind. Aerodyn.,2008

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3