Cryogenic packaging of nanophotonic devices with a low coupling loss <1 dB

Author:

Zeng Beibei1ORCID,De-Eknamkul Chawina1ORCID,Assumpcao Daniel2ORCID,Renaud Dylan2ORCID,Wang Zhuoxian1ORCID,Riedel Daniel1,Ha Jeonghoon1ORCID,Robens Carsten1ORCID,Levonian David1ORCID,Lukin Mikhail3,Riedinger Ralf4ORCID,Bhaskar Mihir1ORCID,Sukachev Denis1,Loncar Marko2,Machielse Bart1ORCID

Affiliation:

1. AWS Center for Quantum Networking 1 , Boston, Massachusetts 02135, USA

2. John A. Paulson School of Engineering and Applied Sciences, Harvard University 2 , Cambridge, Massachusetts 02138, USA

3. Department of Physics, Harvard University 3 , Cambridge, Massachusetts 02138, USA

4. Institut für Laserphysik und Zentrum für Optische Quantentechnologien, Universität Hamburg 4 , 22761 Hamburg, Germany

Abstract

Robust, low-loss photonic packaging of on-chip nanophotonic circuits is a key enabling technology for the deployment of integrated photonics in a variety of classical and quantum technologies including optical communications and quantum communications, sensing, and transduction. To date, no process has been established that enables permanent, broadband, and cryogenically compatible coupling with sub-dB losses from optical fibers to nanophotonic circuits. Here, we report a technique for reproducibly generating a permanently packaged interface between a tapered optical fiber and nanophotonic devices on diamond with a record-low coupling loss <1 dB per facet at near-infrared wavelengths (∼730 nm) that remains stable from 300 K to 30 mK. We further demonstrate the compatibility of this technique with etched lithium niobate on insulator waveguides. The technique lifts performance limitations imposed by scattering as light transfers between photonic devices and optical fibers, paving the way for scalable integration of photonic technologies at both room and cryogenic temperatures.

Funder

Amazon Web Services

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference28 articles.

1. Device Requirements for Optical Interconnects to Silicon Chips

2. D. D. Awschalom , H.Bernien, R.Brown, Report No. ANL-22/83 ( Argonne National Laboratory, 2022).

3. An integrated diamond nanophotonics platform for quantum-optical networks

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3