Circular dichroism of pseudo-two-dimensional metal nanostructures: Rotational symmetry and reciprocity

Author:

Endo Kensaku1,Hashiyada Shun23ORCID,Narushima Tetsuya23ORCID,Togawa Yoshihiko1ORCID,Okamoto Hiromi23ORCID

Affiliation:

1. Department of Physics and Electronics, School of Engineering, Osaka Metropolitan University 1 , Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

2. Institute for Molecular Science, National Institutes of Natural Sciences 2 , Myodaiji, Okazaki, Aichi 444-8585, Japan

3. The Graduate University of Advanced Studies (Sokendai) 3 , Myodaiji, Okazaki, Aichi 444-8585, Japan

Abstract

Circular dichroism (CD) spectra for pseudo-two-dimensional chiral nanomaterials were systematically investigated and analyzed in relation to the rotational symmetry of the nanomaterials. Theoretically, an ideal two-dimensional chiral matter is CD inactive for light incident normal to the plane if it possesses threefold or higher rotational symmetry. If the matter has two- or onefold rotational symmetry, it should exhibit CD activity, and the CD signal measured from the back side of the matter is expected to be inverted from that measured from the front side. For pseudo-two-dimensional chiral gold nanostructures fabricated on glass substrates using electron beam lithography, matter with fourfold rotational symmetry is found to be CD active, even when special care is taken to ensure that the optical environments for the front and back sides of the sample are equivalent. In this case, the CD signal measured from the back side is found to be almost exactly the same as that measured from the front side. It is revealed that the observed chiro-optical behavior arises from three-dimensional chiral characteristics due to differences in the surface shape between the front and back sides of the structures. For matter that is two- or onefold rotationally symmetric, the CD signal measured from the back side is not coincident with that from the front side. For certain wavelength regions, the CD signals measured from the front side and back side are observed to be similar, while at other wavelengths, the inverted component of the CD signals is found to dominate. The observed CD spectral behavior for reciprocal optical measurement configurations is considered to be determined by a balance between the in-plane isotropic and anisotropic components of the chiral permittivity.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3