VERI-D: A new dataset and method for multi-camera vehicle re-identification of damaged cars under varying lighting conditions

Author:

Liu Shao1ORCID,Agaian Sos S.2ORCID

Affiliation:

1. Graduate Center, CUNY 1 , New York, New York 10016, USA

2. College of Staten Island and Graduate Center, CUNY 2 , New York, New York 10314, USA

Abstract

Vehicle re-identification (V-ReID) is a critical task that aims to match the same vehicle across images from different camera viewpoints. The previous studies have leveraged attribute clues, such as color, model, and license plate, to enhance the V-ReID performance. However, these methods often lack effective interaction between the global–local features and the final V-ReID objective. Moreover, they do not address the challenging issues in real-world scenarios, such as high viewpoint variations, extreme illumination conditions, and car appearance changes (e.g., due to damage or wrong driving). We propose a novel framework to tackle these problems and advance the research in V-ReID, which can handle various types of car appearance changes and achieve robust V-ReID under varying lighting conditions. Our main contributions are as follows: (i) we propose a new Re-ID architecture named global–local self-attention network, which integrates local information into the feature learning process and enhances the feature representation for V-ReID and (ii) we introduce a novel damaged vehicle Re-ID dataset called VERI-D, which is the first publicly available dataset that focuses on this challenging yet practical scenario. The dataset contains both natural and synthetic images of damaged vehicles captured from multiple camera viewpoints and under different lighting conditions. (iii) We conduct extensive experiments on the VERI-D dataset and demonstrate the effectiveness of our approach in addressing the challenges associated with damaged vehicle re-identification. We also compare our method to several state-of-the-art V-ReID methods and show its superiority.

Publisher

AIP Publishing

Reference43 articles.

1. Veri-D dataset,2023

2. PROVID: Progressive and multimodal vehicle reidentification for large-scale urban surveillance;IEEE Trans. Multimedia,2018

3. Deep relative distance learning: Tell the difference between similar vehicles,2016

4. 3D object representations for fine-grained categorization

5. A large-scale car dataset for fine-grained categorization and verification,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3