Generation of the vortex terahertz radiation by the interaction of two-color Laguerre–Gaussian laser with plasmas in the presence of a static magnetic field

Author:

Zhang De-Sheng12ORCID,Hong Xue-Ren1ORCID,Zhang Xiao-Bo1ORCID,Tang Rong-An1ORCID,Xie Bai-Song23ORCID

Affiliation:

1. College of Physics and Electronic Engineering, Northwest Normal University 1 , 730070 Lanzhou, People's Republic of China

2. Key Laboratory of Beam Technology of the Ministry of Education, and School of Physics and Astronomy, Beijing Normal University 2 , 100875 Beijing, People's Republic of China

3. Institute of Radiation Technology, Beijing Academy of Science and Technology 3 , 100875 Beijing, People's Republic of China

Abstract

The generation of vortex terahertz (THz) radiation by the interaction of a two-color Laguerre–Gaussian (LG) laser with plasmas under an external magnetic field is investigated theoretically and numerically. It is found that the vortex THz radiation with good monoenergetic properties can be generated successfully, and the orbital angular momentum of the LG lasers can be transferred to the radiation. In this scheme, the external magnetic field can not only enhance the intensity but can also break the spatial distribution symmetry of the vortex THz radiation. With the increase in the initial plasma density, the intensity of the vortex THz radiation increases significantly before reaching saturation and the spatial period of the radiation decreases, which indicates the monoenergetic peak of the vortex THz radiation can be well controlled through the initial plasma density. The relevant conclusions are verified by two-dimensional particle-in-cell simulations.

Funder

National Natural Science Foundation of China

Science and Technology Program of Gansu Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3