Cavitation detection in hydraulic machinery by analyzing acoustic emissions under strong domain shifts using neural networks

Author:

Gaisser (née Harsch) L.1ORCID,Kirschner O.1ORCID,Riedelbauch S.1ORCID

Affiliation:

1. Institute of Fluid Mechanics and Hydraulic Machinery, University of Stuttgart , Stuttgart 70569, Germany

Abstract

We propose a novel, general-purpose framework for cavitation detection in a wide variety of hydraulic machineries by analyzing their acoustic emissions with convolutional neural networks. The superiority of our system lies in the fact that it is trained exclusively with data from model turbines operated in laboratories and can directly be applied to different prototype turbines in hydro-power plants. The challenge is that the measurements to train and test the neural network stem from machines with various turbine designs. This results in train and test data with different data distributions, so-called multi-source and multi-target domains. To handle these domain shifts, two core methods are provided. First, an advanced pre-processing pipeline is used to narrow the domain shift between data from different machines. Second, a domain-alignment method for training neural networks under domain shifts is used, resulting in a classifier that generalizes well to a wide range of prototypes. The outcome of this work is a generic framework capable of detecting cavitation in a wide range of applications. We explicitly do not try to obtain the highest accuracy on a single machine, but rather to achieve as high as possible accuracy on many machines.

Funder

Voith Hydro Holding GmbH & Co. KG

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3