Temperature-dependent self-assembly of biofilaments during red blood cell sickling

Author:

Behera Arabinda1ORCID,Sharma Oshin2,Paul Debjani2,Sain Anirban1ORCID

Affiliation:

1. Department of Physics, Indian Institute of Technology Bombay, Powai, 400076 Mumbai, India

2. Bioscience and Bioengineering Department, Indian Institute of Technology Bombay, Powai, 400076 Mumbai, India

Abstract

Molecular self-assembly plays a vital role in various biological functions. However, when aberrant molecules self-assemble to form large aggregates, it can give rise to various diseases. For example, sickle cell disease and Alzheimer’s disease are caused by self-assembled hemoglobin fibers and amyloid plaques, respectively. Here, we study the assembly kinetics of such fibers using kinetic Monte Carlo simulation. We focus on the initial lag time of these highly stochastic processes, during which self-assembly is very slow. The lag time distributions turn out to be similar for two very different regimes of polymerization, namely, (a) when polymerization is slow and depolymerization is fast and (b) the opposite case, when polymerization is fast and depolymerization is slow. Using temperature-dependent on- and off-rates for hemoglobin fiber growth, reported in recent in vitro experiments, we show that the mean lag time can exhibit non-monotonic behavior with respect to the change in temperature.

Funder

Science and Engineering Research Board

UGC-DAE Consortium for Scientific Research, University Grants Commission

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3