Characterization of iron(III) in aqueous and alkaline environments with ab initio and ReaxFF potentials

Author:

Riefer Arthur1ORCID,Hackert-Oschätzchen Matthias1ORCID,Plänitz Philipp2ORCID,Meichsner Gunnar1ORCID

Affiliation:

1. Chair of Manufacturing Technology with Focus Machining, Institute of Manufacturing Technology and Quality Management (IFQ), Faculty of Mechanical Engineering, Otto von Guericke University Magdeburg 1 , 39106 Magdeburg, Germany

2. AQcomputare Gesellschaft für Materialberechnung mbH 2 , 09125 Chemnitz, Germany

Abstract

The iron(III) complexes [Fe(H2O)n(OH)m]3−m (n + m = 5, 6, m ≤ 3) and corresponding proton transfer reactions are studied with total energy calculations, the nudged elastic band (NEB) method, and molecular dynamics (MD) simulations using ab initio and a modification of reactive force field potentials, the ReaxFF-AQ potentials, based on the implementation according to Böhm et al. [J. Phys. Chem. C 120, 10849–10856 (2016)]. Applying ab initio potentials, the energies for the reactions [Fe(H2O)n(OH)m]3−m + H2O → [Fe(H2O)n−1(OH)m+1]2−m + H3O+ in a gaseous environment are in good agreement with comparable theoretical results. In an aqueous (aq) or alkaline environment, with the aid of NEB computations, respective minimum energy paths with energy barriers of up to 14.6 kcal/mol and a collective transfer of protons are modeled. Within MD simulations at room temperature, a permanent transfer of protons around the iron(III) ion is observed. The information gained concerning the geometrical and energetic properties of water and the [Fe(H2O)n(OH)m]3−m complexes from the ab initio computations has been used as reference data to optimize parameters for the O–H–Fe interaction within the ReaxFF-AQ approach. For the optimized ReaxFF-AQ parameter set, the statistical properties of the basic water model, such as the radial distribution functions and the proton hopping functions, are evaluated. For the [Fe(H2O)n(OH)m]3−m complexes, it was found that while geometrical and energetic properties are in good agreement with the ab initio data for gaseous environment, the statistical properties as obtained from the MD simulations are only partly in accordance with the ab initio results for the iron(III) complexes in aqueous or alkaline environments.

Funder

Federal Ministry of Economic Affairs and Climate Action

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3