Impingement of a water droplet onto a rotational surface

Author:

Zhou YiORCID,Jin ZheyanORCID,Yang ZhigangORCID

Abstract

In the present study, the impact of a water droplet onto a rotational surface was experimentally studied. The effects of the impact velocity, the rotational speed, and the impact radial position on the impact phenomena were carefully investigated. The phenomena of asymmetric spreading, finger formation, and secondary droplets were observed. Moreover, experiments of a water droplet impacting onto a stationary surface with different impact velocities were also conducted for comparisons. The results showed that, at the same impact velocity, the increase in the rotational speed or the impact radial position could result in the increase in the wetting length in the angular direction and the wetting area. In addition, at the same impact velocity, the dimensionless wetting length in the radial direction on the rotational surface was generally lower than the spreading factor on the stationary surface. In addition, new correlations for the spreading ratio, the dimensionless excess spread area, the dimensionless maximum wetting area, and the number of fingers appearing at the angle of 50° after impact were proposed. The increase in the impact velocity and the surface linear velocity could both promote the formation of the fingers at the angle of 50° after impact. In addition, the dimensionless horizontal displacement of the secondary droplet was found to be mainly influenced by the impact velocity, while the surface linear velocity only had a minor influence.

Funder

National Natural Science Foundation of China

National Engineering Research Center of New Energy Vehicles and Power Systems

Shenyang Key Laboratory of Aircraft Icing and Ice Protection

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3