Oligoyne bridges enable strong through-bond coupling and efficient triplet transfer from CdSe QD trap excitons for photon upconversion

Author:

Miyashita Tsumugi1ORCID,He Sheng2ORCID,Jaimes Paulina3ORCID,Kaledin Alexey L.24ORCID,Fumanal Maria5ORCID,Lian Tianquan2ORCID,Lee Tang Ming13ORCID

Affiliation:

1. Department of Biomedical Engineering, University of Utah 1 , Salt Lake City, Utah 84112, USA

2. Department of Chemistry, Emory University 2 , Atlanta, Georgia 30322, USA

3. Department of Chemistry, University of Utah 3 , Salt Lake City, Utah 84112, USA

4. The Cherry L. Emerson Center for Scientific Computation, Emory University 4 , 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, USA

5. Departament de Ciència de Materials i Química Física and IQTCUB, Facultat de Química, Universitat de Barcelona 5 , Martí i Franquès 1, E-08028 Barcelona, Spain

Abstract

Polyyne bridges have attracted extensive interest as molecular wires due to their shallow distance dependence during charge transfer. Here, we investigate whether triplet energy transfer from cadmium selenide (CdSe) quantum dots (QDs) to anthracene acceptors benefits from the high conductance associated with polyyne bridges, especially from the potential cumulene character in their excited states. Introducing π-electron rich oligoyne bridges between the surface-bound anthracene-based transmitter ligands, we explore the triplet energy transfer rate between the CdSe QDs and anthracene core. Our femtosecond transient absorption results reveal that a rate constant damping coefficient of β is 0.118 ± 0.011 Å−1, attributed to a through-bond coupling mechanism facilitated by conjugation among the anthracene core, the oligoyne bridges, and the COO⊖ anchoring group. In addition, oligoyne bridges lower the T1 energy level of the anthracene-based transmitters, enabling efficient triplet energy transfer from trapped excitons in CdSe QDs. Density-functional theory calculations suggest a slight cumulene character in these oligoyne bridges during triplet energy transfer, with diminished bond length alternation. This work demonstrates the potential of oligoyne bridges in mediating long-distance energy transfer.

Funder

National Science Foundation

The Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación

The Unidad de Excelencia María de Maeztu

The Generalitat de Catalunya

Air Force Office of Scientific Research

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3