Photodissociation dynamics of N3+

Author:

Patra Sarbani1,San Vicente Veliz Juan Carlos1ORCID,Koner Debasish12ORCID,Bieske Evan J.3ORCID,Meuwly Markus1ORCID

Affiliation:

1. Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland

2. Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India

3. Department of Chemistry, University of Melbourne, Parkville 3010, Australia

Abstract

The photodissociation dynamics of [Formula: see text] excited from its (linear) 3[Formula: see text]/(bent) 3A″ ground to the first excited singlet and triplet states is investigated. Three-dimensional potential energy surfaces for the 1A′, 1A″, and 3A′ electronic states, correlating with the 1Δg and 3Πu states in linear geometry, for [Formula: see text] are constructed using high-level electronic structure calculations and represented as reproducing kernels. The reference ab initio energies are calculated at the MRCI+Q/aug-cc-pVTZ level of theory. For following the photodissociation dynamics in the excited states, rotational and vibrational distributions P( v′) and P( j′) for the N2 product are determined from vertically excited ground state distributions. Due to the different shapes of the ground state 3A″ potential energy surface and the excited states, appreciable angular momentum j′ ∼ 60 is generated in diatomic fragments. The lifetimes in the excited states extend to at least 50 ps. Notably, results from sampling initial conditions from a thermal ensemble and from the Wigner distribution of the ground state wavefunction are comparable.

Funder

Swiss National Science Foundation

Australian Research Council Discovery Project

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3