Novel behaviors of coercivity in GdFeCo/Hf/MgO heterostructure

Author:

Hai Ngo Trong1ORCID,Luong V. S.2,Bhatt Ramesh Chandra3ORCID,Ye Lin-Xiu3ORCID,Wu Te-ho3ORCID,Horng Lance1,Wu Jong-Ching1ORCID

Affiliation:

1. Department of Physics, National Changhua University of Education, Changhua, Taiwan

2. Faculty of Electrical and Electronic Engineering, Phenikaa University, Hanoi 12116, Vietnam

3. Graduate School of Materials Science, National Yunlin University of Science and Technology, Douliu, Taiwan

Abstract

It is commonly known that the coercivity (Hc) of the rare-earth/transition-metal (RE–TM) compound is tuned based on the varying RE content as compared to the TM component. The drawback of this approach is that the Hc changes are permanent. In this work, we investigate the coercivity behaviors of the GdFeCo/Hf/MgO heterostructure where the heavy metal Hf layer is inserted in the middle not only to convert charge current into spin current but also to prevent the oxygen diffusion effect. A strong geometry dependence of coercivity detected on Hall bar devices is attributed to the intrinsic properties of GdFeCo and elucidates that the oxidation issue from MgO on GdFeCo is prevented. By selecting a proper Gd content, we demonstrate that the coercivity can be altered flexibly in a wide range [Formula: see text] via electric current. We develop a simple model to simulate the roles of Joule heating and spin–orbit torques in the novel behaviors of coercivity. It is verified that the excellent magnetic characteristics of GdFeCo are still preserved while manipulating coercivity by the electric current. Our findings broaden the new magnetic behaviors of RE–TM alloys, making them attractive for tunable magnetic anisotropy.

Funder

Institute for Information Industry, Ministry of Science and Technology, Taiwan

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3