Acceleration of hollow carbon nanospheres by gas leakage: An efficient nanomotor

Author:

Dong Yi1ORCID,Li Yu1ORCID,Guo Zheng-Rong1,Jiang Jin-Wu1ORCID

Affiliation:

1. Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, People’s Republic of China

Abstract

Nanomotors serve as nanoscale engines by converting various energies into mechanical energy. In addition to the huge number of existing nanomotors, we propose a simple nanomotor based on the hollow carbon nanosphere (i.e., fullerene) that is full of gas. We investigate the acceleration of the nanosphere by leakage of gas through a nanopore by molecular dynamics simulations. The nanosphere can be driven to a high speed of 100 m/s under proper simulation conditions, which can be further tuned by temperature, gas density, and pore diameter. We observe rotation of the pore direction during the acceleration process for a nanosphere of different pore diameters. The acceleration process can be well described by the Meshchersky theory. We also simulate the deceleration process of the nanosphere due to the damping force of the gas, which can be analyzed in terms of the kinetic motion of gas molecules. The nanomotor proposed in this work shall be realizable in experiments and may be useful in driving the mechanic motion of fullerenes.

Funder

National Natural Science Foundation of China

Shanghai Municipal Education Commission

Major Scientific Project of Zhejiang Laboratory

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3