Calculation of particle volume fraction in computational fluid dynamics-discrete element method simulation of particulate flows with coarse particles

Author:

Zhang YanORCID,Ren Wan-LongORCID,Li PengORCID,Zhang Xu-HuiORCID,Lu Xiao-BingORCID

Abstract

Computational fluid dynamics-discrete element method is frequently used for modeling particulate flows due to its high efficiency and satisfactory accuracy. The particle volume fraction is a crucial parameter that significantly affects the computation accuracy. It may be extremely large when the particulate flows contain coarse particles because it is determined by the ratio of particle volume to cell volume. In this paper, the performance of different methods, such as the divided particle volume method (DPVM), the big particle method, and the diffusion-based method, for computing the particle volume fraction is thoroughly reviewed, implemented, and investigated. It turns out that the DPVM must not be used when the particle size is larger than cell size due to significant fluctuation of the particle volume fraction field. The big particle method is optimized for simulation accuracy and code implementation. The optimized big particle method is similar to the diffusion-based method by diffusing the particle effects to the surrounding cells. It demonstrates greater consistency with experimental observations compared to the diffusion-based method, primarily attributed to its incorporation of polydisperse effects.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Scicences

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3