A Laguerre–Volterra network model based on ant colony optimization applied to evaluate EMG-force relationship in the muscle fatigue state

Author:

Ma Min1ORCID,Luo Xi1,Xiahou Shiji1ORCID,Shan Xinran1

Affiliation:

1. University of Electronic Science and Technology of China , No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, Sichuan 611731, China

Abstract

With the accuracy and convenience improvement of electromyographic (EMG) acquired by wearable devices, EMG is gradually used to evaluate muscle force signal, a non-invasive evaluation method. However, the relationship between EMG and force is a complex nonlinear relationship, even which will change with different movements and different muscle states. Therefore, it is difficult to evaluate this nonlinear EMG–force relationship, especially when the muscle state gradually transits from non-fatigue to deep fatigue. For more accurate values of force in human fatigue state, this paper proposes a dual-input Laguerre–Volterra network (LVN) model based on ant colony optimization. First, the changes in 19 EMG features are discussed with increasing fatigue. We also consider two non-Gaussian features: kurtosis and negentropy in the 19 features. Later, 11 EMG fatigue features are picked out according to the fatigue test. Then, the preprocessed EMG and a composite signal of the 11 fatigue features are simultaneously input into the LVN model. Subsequently, the ant colony optimization algorithm is selected to train the model parameters. At the same time, a penalty term that we defined is introduced into the model cost function to adjust the weight of each feature adaptively. Finally, some experiments prove that the LVN model could quick fit the accurate force signal in five fatigue stages, such as non-fatigue, slight fatigue, mild fatigue, severe fatigue, and extreme fatigue. This LVN model can quickly transform EMG into strength signal in real time, which is suitable for people to observe muscle strength by a wearable device and makes it easy to detect the muscle current state. This model has good stability and can remain effective for a long time with training once, which provides convenience for the users of wearable devices.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3