Chirality induced spin selectivity in chiral hybrid organic–inorganic perovskites

Author:

Wang Jingying12ORCID,Mao Baorui12,Vardeny Zeev Valy3ORCID

Affiliation:

1. School of Physics, Sun Yat-sen University 1 , Guangzhou 510275, China

2. State Key Laboratory for Optoelectronic Materials and Technologies, Sun Yat-sen University 2 , Guangzhou 510275, China

3. Department of Physics and Astronomy, University of Utah 3 , Salt Lake City, Utah 84112, USA

Abstract

Chiral materials exhibit many interesting physical properties including circular dichroism, circularly polarized photoluminescence, and spin selectivity. Since its discovery, chirality-induced spin selectivity (CISS) has been demonstrated in many chiral material systems, which indicates promising applications in spintronic devices. Thus, searching for compounds that possess both sizable chirality and excellent spin transport properties is in order. Hybrid organic–inorganic perovskites have attracted intensive research interest due to their long carrier lifetime, high carrier mobility, chemically tunable electronic properties, and long spin lifetime, which make this emerging class of semiconductors promising candidate for spintronics. Moreover, hybrid perovskites integrate inorganic octahedral framework and organic ligands, which may introduce chirality into the materials, especially in quasi-two-dimensional structures. Recently, CISS has been observed in 2D chiral hybrid perovskites, showing the spin filtering effect. Studies of CISS in chiral hybrid perovskites not only help deepen our understanding of CISS mechanism but also shed new light on designing novel spintronic devices. In this review, we summarize the state-of-the-art studies of CISS effect in 2D chiral hybrid organic–inorganic perovskites system. We also discuss the remaining challenges and research opportunities of employing CISS in next-generation spintronic devices.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Reference115 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3