A novel self-adaptive SIS model based on the mutual interaction between a graph and its line graph

Author:

Bartesaghi Paolo1ORCID,Clemente Gian Paolo2ORCID,Grassi Rosanna1ORCID

Affiliation:

1. Department of Statistics and Quantitative Methods, University of Milano—Bicocca 1 , Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy

2. Dipartimento di Matematica per le Scienze Economiche, Finanziarie ed Attuariali, Universitá Cattolica del Sacro Cuore di Milano 2 , Largo Gemelli 1, 20123 Milano, Italy

Abstract

We propose a new paradigm to design a network-based self-adaptive epidemic model that relies on the interplay between the network and its line graph. We implement this proposal on a susceptible-infected-susceptible model in which both nodes and edges are considered susceptible and their respective probabilities of being infected result in a real-time re-modulation of the weights of both the graph and its line graph. The new model can be considered as an appropriate perturbation of the standard susceptible-infected-susceptible model, and the coupling between the graph and its line graph is interpreted as a reinforcement factor that fosters diffusion through a continuous adjustment of the parameters involved. We study the existence and stability conditions of the endemic and disease-free states for general network topologies. Moreover, we introduce, through the asymptotic values in the endemic steady states, a new type of eigenvector centrality where the score of a node depends on both the neighboring nodes and the edges connected to it. We also investigate the properties of this new model on some specific synthetic graphs, such as cycle, regular, and star graphs. Finally, we perform a series of numerical simulations and prove their effectiveness in capturing some empirical evidence on behavioral adoption mechanisms.

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3