Multi frame radiography of supersonic water jets interacting with a foil target

Author:

Maler D.1ORCID,Belozerov O.1ORCID,Godinger A.1ORCID,Efimov S.1ORCID,Strucka J.2ORCID,Yao Y.2,Mughal K.2ORCID,Lukic B.3ORCID,Rack A.3ORCID,Bland S. N.2ORCID,Krasik Ya. E.1ORCID

Affiliation:

1. Physics Department, Technion—Israeli Institute of Technology 1 , Haifa 3200003, Israel

2. Plasma Physics Group, Imperial College London 2 , London SW7 2BW, United Kingdom

3. European Synchrotron Radiation Facility 3 , CS40220, 38043 Grenoble Cedex 9, France

Abstract

Pulsed-power-driven underwater electrical explosion of cylindrical or conical wire arrays produces supersonic water jets that emerge from a bath, propagating through the air above it. Interaction of these jets with solid targets may represent a new platform for attaining materials at high pressure (>1010 Pa) conditions in a university-scale laboratory. However, measurements of the internal structure of such jets and how they interact with targets are difficult optically due to large densities and density contrasts involved. We utilized multi-frame x-ray radiographic imaging capabilities of the ID19 beamline at the European Synchrotron Radiation Facility to explore the water jet and its interaction with a 50 μm thick copper foil placed a few mm from the surface of water. The jet was generated with a ∼130 kA-amplitude current pulse of ∼450 ns rise time applied to a conical wire array. X-ray imaging revealed a droplet-type structure of the jet with an average density of <400 kg/m3 propagating with a velocity of ∼1400 m/s. Measurements of deformation and subsequent perforation of the target by the jet suggested pressures at the jet–target interface of ∼5 × 109 Pa. The results were compared to hydrodynamic simulations for better understanding of the jet parameters and their interaction with the foil target. These results can be used in future research to optimize the platform, and extend it to larger jet velocities in the case of higher driving currents supplied to the wire array.

Funder

Israel Science Foundation

First Light Fusion Ltd, EPSRC, U,S, Department of Energy

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3