Asymmetry of wetting and de-wetting on high-friction surfaces originates from the same molecular physics

Author:

Pellegrino M.1ORCID,Hess B.1ORCID

Affiliation:

1. Swedish e-Science Research Centre, Science for Life Laboratory, Department of Applied Physics KTH, 100 44 Stockholm, Sweden

Abstract

Motion of three-phase contact lines is one of the most relevant research topics of micro- and nano-fluidics. According to many hydrodynamic and molecular models, the dynamics of contact lines is assumed overdamped and dominated by localized liquid–solid friction, entailing the existence of a mobility relation between contact line speed and microscopic contact angle. We present and discuss a set of non-equilibrium atomistic molecular dynamics simulations of water nanodroplets spreading on or confined between silica-like walls, showing the existence of the aforementioned relation and its invariance under wetting modes (“spontaneous” or “forced”). Upon changing the wettability of the walls, it has been noticed that more hydrophilic substrates are easier to wet rather than de-wet; we show how this asymmetry can be automatically captured by a contact line friction model that accounts for the molecular transport between liquid layers. A simple examination of the order and orientation of near-contact-line water molecules corroborates the physical foundation of the model. Furthermore, we present a way to utilize the framework of multicomponent molecular kinetic theory to analyze molecular contributions to the motion of contact lines. Finally, we propose an approach to discriminate between contact line friction models which overcomes the limitations of experimental resolution. This work constitutes a stepping stone toward demystifying wetting dynamics on high-friction hydrophilic substrates and underlines the relevance of contact line friction in modeling the motion of three-phase contact lines.

Funder

Vetenskapsrådet

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3