Design and testing of a high-precision generating voltmeter for metal-enclosed megavolt level DC voltage source

Author:

Li Xiaoang1ORCID,Wang Shuxiao1ORCID,Lv Xiaoxiao1ORCID,Zhang Zhipeng1,Shao Yikai1ORCID,Li Zhibing2,Zhang Qiaogen1ORCID

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Institute of High Voltage Technology, Xi’an Jiaotong University 1 , Xi’an 710049, China

2. Institute of High Voltage Technology, China Electrical Power Research Institute 2 , Beijing 100192, China

Abstract

An extremely stable megavolt (MV) level DC voltage source is the key foundation for many scientific instruments, and the need for accurate measurement and long-term real-time monitoring of its output voltage is increasingly urgent. The utilization of conventional resistive voltage dividers for measurements introduces leakage currents, resulting in considerable measurement errors. The non-contact generating voltmeter (GVM) sensor based on electric field measurement has a simple structure and a low cost, making it expected to be an effective solution. Currently, most research on GVM sensors focuses on the measurement of weak electric fields at kV/m levels with significant interference. In this paper, an improved high-precision non-contact GVM sensor was designed. A DC voltage test platform was built, and the effects of the sampling resistor and motor rotation speed on the measurement results were discussed. The relative combined uncertainty of the improved GVM sensor reached 0.042%, which satisfied the urgent need for MV level DC voltage source measurement. The improved GVM sensor can provide an effective reference for measuring the output voltage of a metal-enclosed MV level DC voltage source or the potential of a suspended electrode.

Funder

State Grid Corporation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3