High efficiency design of metal–insulator–metal metasurface by ResNets-10

Author:

Liu Kaizhu1ORCID,Chui Hsiang-Chen1ORCID,Sun Changsen1ORCID,Han Xue1ORCID

Affiliation:

1. School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology , Dalian 116024, China

Abstract

Deep learning prediction of metasurface has been a widely discussed issue in recent years. However, the prediction accuracy is still one of the challenges to be solved. In this work, we proposed using the ResNets-10 model to predict plasmonic metasurface S11 parameters. The two-stage training was performed by the k-fold cross-validation and small learning rate. After the training was complete, the predicted logarithmic losses for aluminum, gold, and silver metal–insulator–metal metasurfaces were −48.45, −46.47, and −35.54, respectively. Due to the ultralow error value, the proposed network can efficiently replace the traditional computing methods within a certain structural range. The ResNets-10 can complete training within 1100 iterations, which is highly efficient. The ResNets-10 model we proposed can also be used to design meta-diffractive devices and meta-resonance biosensors, thereby reducing the time required for the simulation process. The ultralow lose value of the network indicates that this work contributes to the development of future artificial intelligence electromagnetic devices computing software.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3